Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 9: 661376, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898384

RESUMEN

When a radiological and nuclear (R/N) emergency occurs, the categorization of individuals into those who are unaffected and those requiring medical intervention is a high priority. At times, a professional dosimeter is not available and therefore some common belongings may be used as fortuitous dosimeters. The preparation of these objects for the measurement should be such as to give the most accurate and precise results. This paper focused on the Photo-Stimulated Luminescence (PSL) response of salty crackers confronts the problem of sample preparation (mass, grain size), dose response and signal stability. The dose response was determined for doses up to 5 Gy, which allowed the calculation of the limit of detection. Additionally, the signal stability was investigated for samples irradiated with 0.3 and 3 Gy. The observed decrease of the signal does not prevent the detection in the dose range typical for R/N emergency. The main dosimetric characteristics were investigated by using two different models of PSL readers equipped with single (infrared) or double (infrared, blue light) stimulation. The results indicated that the limit of detection can be improved by applying blue light stimulation. Moreover, strong correlation of the measurements performed in the two different instruments, as well as the rapidity of the analysis and the simplicity of the operations, suggest that this method can be suitable for a rapid radiation triage of a large number of civilians in a mass casualty event. The study was simultaneously conducted by two laboratories (Ruder Boskovic Institute, RBI, Croatia and Istituto Superiore di Sanità, ISS, Italy) involved in the BioPhyMeTRE project (grant No. G5684) supported by NATO Science for Peace and Security Programme.


Asunto(s)
Dosímetros de Radiación , Triaje , Croacia , Humanos , Italia , Radiometría
2.
J Radiol Prot ; 41(4)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848995

RESUMEN

It is increasingly recognised that stakeholder views can be essential for ascertaining the credibility of those entrusted with protection of the public and workers against radiation risks, the robustness of the approaches to protection and the relevance of research underpinning radiation protection (RP). The CONCERT European Joint Programme of RP research included consideration of stakeholder views. These were evaluated by means of a publicly available survey, translated into 15 languages, to encourage responses from a wide range of European countries. The survey ran in 2017 and received some 1961 responses from many countries, although response rates varied widely between countries. The survey respondents were largely highly educated, with many having a professional connection to RP or the use of radiation in medicine or industry. Survey results indicated a high level of scientific/technical knowledge relevant to RP and indicated a general trust of most actors involved in the RP field, perhaps unsurprisingly given the nature of the sampled population. Most expressed a reasonable level of satisfaction with the information available to them on radiation risk, but there is clearly room for improvement. Additionally, the survey identified potential training needs amongst the groups who responded. It is concluded that, while the survey results are limited by the non-representativeness of the respondents by comparison with the population of the European Union as a whole, it has been successful in gaining insights into areas where communication could be improved, where professional training gaps are present and where research could help to build wider trust in RP.


Asunto(s)
Protección Radiológica , Europa (Continente) , Unión Europea , Humanos , Percepción , Encuestas y Cuestionarios
3.
Environ Int ; 146: 106175, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069983

RESUMEN

The experiences of the Chernobyl and Fukushima nuclear accidents showed that dosimetry was the essential tool in the emergency situation for decision making processes, such as evacuation and application of protective measures. However, at the consequent post-accidental phases, it was crucial also for medical health surveillance and in further adaptation to changed conditions with regards to radiation protection of the affected populations. This review provides an analysis of the experiences related to the role of dosimetry (dose measurements, assessment and reconstruction) regarding health preventive measures in the post-accidental periods on the examples of the major past nuclear accidents such as Chernobyl and Fukushima. Recommendations derived from the review are called to improve individual dose assessment in case of a radiological accident/incident and should be considered in advance as guidelines to follow for having better information. They are given as conclusions.


Asunto(s)
Accidente Nuclear de Chernóbil , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Protección Radiológica , Humanos , Japón
4.
Radiat Prot Dosimetry ; 178(4): 382-404, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981844

RESUMEN

Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.


Asunto(s)
Dosis de Radiación , Radiometría/métodos , Incertidumbre , Carga Corporal (Radioterapia) , Europa (Continente) , Humanos , Monitoreo de Radiación , Radiación Ionizante , Medición de Riesgo/métodos
5.
Int J Radiat Biol ; 93(1): 2-14, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27707245

RESUMEN

PURPOSE: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. RESULTS: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. CONCLUSIONS: RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.


Asunto(s)
Bioensayo/métodos , Planificación en Desastres/organización & administración , Traumatismos por Radiación/prevención & control , Monitoreo de Radiación/métodos , Protección Radiológica/métodos , Administración de la Seguridad/organización & administración , Urgencias Médicas , Europa (Continente) , Humanos , Objetivos Organizacionales , Exposición a la Radiación/análisis , Exposición a la Radiación/prevención & control , Liberación de Radiactividad Peligrosa/prevención & control
6.
Int J Radiat Biol ; 93(1): 65-74, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27584947

RESUMEN

PURPOSE: In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. MATERIALS AND METHODS: OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. RESULTS: OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. CONCLUSIONS: Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.


Asunto(s)
Bioensayo/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Exposición a la Radiación/análisis , Dosimetría Termoluminiscente/instrumentación , Triaje/métodos , Bioensayo/normas , Espectroscopía de Resonancia por Spin del Electrón/normas , Diseño de Equipo , Análisis de Falla de Equipo , Europa (Continente) , Humanos , Linfocitos/efectos de la radiación , Garantía de la Calidad de Atención de Salud , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Integración de Sistemas , Dosimetría Termoluminiscente/normas , Triaje/normas
7.
Int J Radiat Biol ; 93(1): 136-141, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27557790

RESUMEN

PURPOSE: To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of national contact points and their articulation with other stakeholders in emergency response) as well as robust quality control/assurance systems. MATERIALS AND METHODS: A survey was prepared and sent to the RENEB partners in order to acquire information about the existing, operational techniques and infrastructure in the laboratories of the different RENEB countries and to assess the capacity of response in the event of radiological or nuclear accident involving mass casualties. The survey focused on several main areas: laboratory's general information, country and staff involved in biological and physical dosimetry; retrospective assays used, the number of assays available per laboratory and other information related to biodosimetry and emergency preparedness. Following technical intercomparisons amongst RENEB members, an update of the survey was performed one year later concerning the staff and the available assays. CONCLUSIONS: The analysis of RENEB questionnaires allowed a detailed assessment of existing capacity of the RENEB network to respond to nuclear and radiological emergencies. This highlighted the key importance of international cooperation in order to guarantee an effective and timely response in the event of radiological or nuclear accidents involving a considerable number of casualties. The deployment of the scientific and technical capabilities existing within the RENEB network members seems mandatory, to help other countries with less or no capacity for biological or physical dosimetry, or countries overwhelmed in case of a radiological or nuclear accident involving a large number of individuals.


Asunto(s)
Investigación Biomédica/organización & administración , Planificación en Desastres/organización & administración , Monitoreo de Radiación/métodos , Protección Radiológica/métodos , Liberación de Radiactividad Peligrosa , Administración de la Seguridad/organización & administración , Europa (Continente) , Modelos Organizacionales , Radiobiología/organización & administración
8.
Int J Radiat Biol ; 93(1): 75-80, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27559844

RESUMEN

PURPOSE: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. MATERIALS AND METHODS: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. RESULTS: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). CONCLUSIONS: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.


Asunto(s)
Planificación en Desastres/organización & administración , Monitoreo de Radiación/métodos , Liberación de Radiactividad Peligrosa , Radiobiología/educación , Administración de la Seguridad/organización & administración , Triaje/organización & administración , Europa (Continente)
9.
Radiat Environ Biophys ; 53(2): 311-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24671362

RESUMEN

This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogeneous batch of glass and were stored in similar setting; for group B (formed by eight participants), samples came from different smart phones and stored in different settings of light and temperature. The calibration curves determined by the participants of group A had a small error and a critical level in the 0.37-0.40-Gy dose range, whereas the curves determined by the participants of group B were more scattered and led to a critical level in the 1.3-3.2-Gy dose range for six participants out of eight. Group A were able to assess the dose within 20 % for the lowest doses (<1.5 Gy) and within 5 % for the highest doses. For group B, only the highest blind dose could be evaluated in a reliable way because of the high critical values involved. The results from group A are encouraging, whereas the results from group B suggest that the influence of environmental conditions and the intervariability of samples coming from different smart phones need to be further investigated. An alongside conclusion is that the protocol was easily transferred to participants making a network of laboratories in case of a mass casualty event potentially feasible.


Asunto(s)
Teléfono Celular , Espectroscopía de Resonancia por Spin del Electrón/métodos , Vidrio , Radiometría/métodos , Calibración , Humanos , Estadística como Asunto
10.
Ann Ist Super Sanita ; 45(3): 297-306, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19861735

RESUMEN

The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.


Asunto(s)
Medicina de Emergencia/métodos , Luminiscencia , Efectos de la Radiación , Liberación de Radiactividad Peligrosa , Radiometría/métodos , Humanos , Triaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA